Вычисление площадей в декартовых координатах
Воздушный трансформатор

Несинусоидальные токи

Расчет электрических цепей, выполненный ранее, проводился в предположении, что источники энергии были либо постоянными, либо синусоидальными и вызывали в элементах цепей постоянные или синусоидальные токи. В реальных условиях кривые ЭДС, напряжения и тока лишь в определенной мере могут считаться синусоидальными, при этом указанные параметры цепей могут иметь характер периодический, квазипериодический (почти периодический) и непериодический. Это происходит за счет наличия в электрических цепях нелинейных элементов: вентиль (диод), электрическая дуга, катушка со стальным сердечником (дроссель), различного рода электрические помехи и т.д., которые искажают синусоидальную функцию, приводя к появлению несинусоидальных функций токов и напряжений, кроме того, сам источник энергии может являться генератором несинусоидальной ЭДС. На рис. 7.1 представлены варианты данных функций.

Рис.7.1. Пример несинусоидальных периодических функций

Анализ электрических цепей Активная и реактивная мощности трехфазной цепи Расчетное задание по ТОЭ

Разложение периодической функции в тригонометрический ряд

Во всех задачах, где приходится иметь дело с периодическими несинусоидальными функциями токов, ЭДС и напряжений, необходимо свести их к более простому виду, для которого возможно применение известных методов расчета. Процессы, происходящие в линейных электрических цепях при несинусоидальных токах и напряжениях, удобнее всего рассчитывать, если воспользоваться тригонометрическим рядом Фурье. В общем случае выражение этого ряда имеет вид

f(ωt) = A0 + A1msin(ωt+ψ1) + A2msin(2ωt + ψ2) + … 138(7.1)

Первое слагаемое носит название нулевой гармоники или постоянной составляющей ряда, где k - номер гармоники, при k = 0 ψk = π/2, Akm = A0 - нулевая гармоника. Она присутствует в составе ряда не всегда. Если функция симметрична относительно оси времени, то нулевой гармоники нет.

Второе слагаемое - это первая или основная гармоника ряда, задает основной период T = 2π/ω.

Все остальные слагаемые носят название высших гармоник ряда. Период каждой из них кратен периоду основной гармоники. Сделаем преобразование ряда, раскрыв синус суммы,

  . 139(7.2)

 ;

  ;  . 

Коэффициенты ряда определяются по следующим формулам:

 ; 140(7.3)

.

Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.
Гармоники в трехфазных цепях