Метод контурных токов Метод узловых потенциалов

Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении

Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN. Схема цепи примет вид (рис. 108):

 




Разложим несимметричную систему напряжений UA, UB, UC на симметричные составляющие прямой, обратной и нулевой последовательностей: Решение задачи по теме «Трехфазные трансформаторы» Условие задачи. В трехфазном двухобмоточном трансформаторе с соедин­ением обмоток по схеме Y/D заданы номинальные параметры: мощность Sн; линейное напряжение первичной обмотки U1н; линейное напряжение вторичной обмотки U2н; мощность потерь короткого замыкания Рк; напряжение короткого замыкания uк; ток холостого хода i0; кпд при коэффициенте нагрузки b = 0.5 и соs j2 = 0.8.

,

,

.

Применим к расчету схемы метод наложения и выполним расчет токов отдельно для каждой симметричной составляющей напряжения. Так как для каждой из симметричных составляющих трехфазная схема генератор-приемник полностью симметрична, то расчет режима можно выполнять только для одной фазы А, соответственно трехфазную схему следует заменить тремя однофазными отдельно для каждой составляющей (рис. 109а, б, в). В симметричном режиме для прямой и обратной последовательностей ток в нулевом проводе равен нулю и, следовательно, напряжение . Это означает, что сопротивление в нейтральном проводе ZN не оказывает влияния на фазные токи и не должно включаться в схемы для этих последовательностей (рис. 109а, б). Токи нулевой последовательности во всех фазах совпадают и могут замкнуться только через нулевой провод: IN = IA0 + IB0 + IC0 = 3IA0. По 2-му закону Кирхгофа для нулевой последовательности (рис. 3) получим:

UA0 = IA0Z0 + IN×ZN = IA0(Z0 + 3ZN)

Согласно полученному уравнению схема замещения для нулевой последовательности получит вид (рис. 109в), в которой последовательно с сопротивлением фазы Z0 включается утроенное сопротивление нейтрали 3ZN.

В схемах для отдельных симметричных составляющих (рис. 4а, б, в) обозначены Z1, Z2, Z0 - комплексные сопротивления фазы приемника для токов соответственно прямой, обратной и нулевой последовательностей. Для приемников с вращающимся магнитным полем эти сопротивления существенно отличаются.

 


По закону Ома в каждой из схем рис. 109а, б, в производится расчет токов прямой, обратной и нулевой последовательностей:

.

Действительные токи в исходной схеме (рис. 108) определяются по методу наложения, как векторные суммы токов прямой, обратной и нулевой последовательностей:

IA = IA1 + IA2 + IA0 ,

IB = IB1 + IB2 + IB0 = a2×IA1 +a×IA2 + IA0 ,

IC = IC1 + IC2 + IC0 =a×IA1 + a2×IA2 + IA0 .

Комплексные сопротивления фаз статичных трехфазных приемников (осветительная нагрузка, нагревательные приборы и др.) не зависят от вида последовательности, для таких приемников . Расчет токов таких приемников может выполняться обычными методами. Для трехфазных приемников, в которых существует вращающееся магнитное поле (электродвигатели, генераторы), сопротивления фаз для токов разных последовательностей существенно отличаются (). Расчет токов таких приемников при несимметричном напряжении должен производиться исключительно методом симметричных составляющих.

Метод наложения: ток в любой ветви равен алгебраической сумме токов, вызываемых каждой из Э.Д.С. схе-мы в отдельности. Линейная электрическая цепь описывается системой линейных уравнений Кирхгофа. Это означает, что она подчиняется принципу наложения (суперпозиции), согласно которому совместное действие всех источников в электрической цепи совпадает с суммой действий каждого из них в отдельности.
Электрические цепи трехфазного тока