Метод контурных токов Метод узловых потенциалов

Уравнения Ома и Кирхгофа в матричной форме

Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо заменить (объединить) одной эквивалентной ветвью.

В общем случае любая ветвь схемы кроме комплексного сопротивления (проводимости)  может содержать источник ЭДС Ек, источник тока Jк. Схема и граф обобщенной ветви показаны на рис. 1а, б:

 


Ток ветви Iк, напряжение ветви Uк = j1 - j2.

Из потенциального уравнения ветви  следуют:

- уравнения Ома для к-ой ветви.

Для всех «m» ветвей составим систему уравнений по этой форме:

Заменим полученную систему из «m» уравнений матричной формой. Для этой цели введем следующие обозначения матриц:

 


 


 ; 

Уравнения Ома в матричной форме получат вид:

 

Уравнения Кирхгофа в обычной форме имеют вид:  - первый закон Кирхгофа для узлов, - второй закон Кирхгофа для контуров.

Система уравнений Кирхгофа в матричной форме получается через матрицы соединений  и :

Составленная система уравнений содержит “m” неизвестных токов и “m” неизвестных напряжений, всего 2“m” неизвестных, и непосредственно не может быть решена.

Основные методы анализа линейных электрических цепей. Значительно упрощают расчет методом контурных токов, так как он позволяет сократить число уравнений. При расчёте этим методом полагают, что в каждом независимом контуре схемы течёт свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей
Электрические цепи трехфазного тока