Метод контурных токов Метод узловых потенциалов

Резонанс в электрических цепях

Определение резонанса

В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки  и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0.

2. Резонанс напряжений

Резонанс в цепи с последовательным соединением источника энергии и реактивных элементов L и C получил название резонанса напряжений. Простейшая схема такой цепи показана на рис. 59.

 


Комплексное входное сопротивление схемы:.

Условие резонанса напряжений: Xэ= XL - XC или wL =  , откуда w0 = - резонансная или собственная частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полное сопротивление схемы имеет минимальное значение и равно активному сопротивлению:

= R,

а ток максимален и совпадает по фазе с напряжением источника: I=E/R; j = 0.

Векторная диаграмма напряжений и тока показана на рис. 60.


 


 

 

Напряжения на реактивных элементах равны по модулю, противоположны по фазе и взаимно компенсируют друг друга:

,

а напряжение на резисторе равно напряжению источника : UR=IR=U=E.

Равные по модулю напряжения на реактивных элементах UL=UC = могут значительно превосходить напряжение источника U = Е при условии, что XL=XC>>R.

Выясним энергетические процессы, протекающие в цепи в резонансном режиме. Пусть в цепи протекает ток i =Imsinwt, тогда напряжение на конденсаторе составит:

.

Сумма энергий магнитного и электрического полей равна:

Таким образом, сумма энергий магнитного и электрического полей равна постоянному значению. Это значит, что между магнитным и электрическим полями происходит непрерывный обмен энергией, суммарное значение которой постоянно, а обмен энергией между источником и цепью отсутствует, при этом поступающая от источника энергия преобразуется в другие виды..

Электрическая цепь с последовательным соединением элементов R, L, C в технике получила название последовательного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры:   - резонансная частота; r =   - волновое сопротивление; Q = - добротность.

Чем больше добротность контура Q, тем выразительнее проявляются в нем резонансные явления; например, напряжения на реактивных элементах больше напряжения источника  в Q раз: UL = UC = UQ.

При изменении частоты источника w = var будут изменяться сопротивления реактивных элементов и, как следствие, будут изменяться ток в цепи и напряжения на отдельных участках.

Частотными характеристиками контура называются зависимости сопротивлений отдельных элементов и участков от частоты XL =wL; XC =; X =XL-XC ; Z= (рис. 61).

Резонансными характеристиками называются зависимости режимных параметров от частоты: UL, UC, I, j = f(w) (рис. 62).

 


 


Полосой пропускания резонансного контура называют область частот Dw = w1-w2, на границах которой ток I в  раз меньше своего максимального значения, т.е. I=0,707Imax. Полоса пропускания контура обратно пропорциональна его добротности:  Dw =. На рис. 63 в относительных единицах представлено семейство резонансных характеристик с различными значениями добротности.

 


 

Токам, направленным к узлу, присвоим знак "плюс",а токам, направленным от узла - знак "минус". Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре
Электрические цепи трехфазного тока