Курсовая работа по ТОЭ

Теоремы и методы расчета сложных резистивных цепей

Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей.

Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами.

Сложной называется электрическая цепь (схема), содержащая не менее двух узлов, не менее трех ветвей и не менее двух источников энергии в разных ветвях.

В сложной электрической цепи наблюдаются одновременно в той или иной мере разнородные физические процессы, а именно, процесс генерирования электрической энергии, процесс преобразования электрической энергии в другие виды и процесс обмена энергией между магнитным полем, электрическим полем и источниками энергии. В общем случае для отображения этих физических процессов схема замещения цепи должна содержать кроме источников энергии (E, J) все разнородные схемные элементы (R, L, C). Математически физические процессы в такой схеме можно описать системой дифференциальных уравнений, составленных для схемы замещения по законам Кирхгофа.

В стационарном режиме (в режиме постоянного тока) напряжение на катушке равно нулю (), что соответствует короткому замыканию этого элемента, а при постоянном напряжении ток в конденсаторе равен нулю (), что соответствует разрыву ветви с этим элементом. Следовательно, на установившийся режим постоянного тока схемные элементы L и C не оказывают влияния и могут быть исключены из схемы замещения (участки с L закорочены, а ветви с C удалены). Цепи постоянного тока представляются эквивалентными схемами, содержащими только постоянные источники энергии E, J и резистивные элементы R. Такие схемы получили название резистивных или постоянного тока. Установившийся режим постоянного или переменного тока в таких схемах описывается системой линейных алгебраических уравнений, составленных по законам Кирхгофа.

В настоящей главе будут рассматриваться только резистивные цепи в режиме постоянного тока. В последующем рассмотренные в данной главе теоремы и методы расчета будут распространены на цепи переменного тока в установившемся синусоидальном режиме.

2. Метод преобразования (свертки) схемы

Если схема электрической цепи содержит только один источник энергии (E или J), то пассивная часть схемы может быть преобразована (свернута) к одному эквивалентному элементу RЭ ( рис. 7).

 


Свертка схемы начинается с самых удаленных от источника ветвей, проводится в несколько этапов до достижения полной свертки. После полной свертки схемы по закону Ома определяется ток источника: . Токи в остальных элементах исходной схемы находятся в процессе обратной развертки схемы. Такой метод расчета токов получил название метода последовательного преобразования (свертки) схемы.

При применении данного метода возможны следующие виды преобразований.

1) Последовательное преобразование заключается в замене нескольких элементов, включенных последовательно, одним эквивалентным (рис. 8).

Несложно доказать, что справедливы следующие соотношения:

 и 


 


2) Параллельное преобразование состоит в замене нескольких элементов, включенных параллельно, одним эквивалентным (рис. 9).

 


Несложно доказать, что справедливы следующие соотношения:

 и 

Для двух элементов:  и 

Основные понятия.Законы Ома,Дж.Ленца и Кирхгофа при анализе цепей. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления Падением напряжения на сопротивлении называется произведение тока, протекающего через сопротивление, на величину этого сопротивления.
Бесплатная консультация юриста онлайн и по телефону читайте здесь.
Электрические цепи переменного синусоидального тока