Курсовая работа по ТОЭ

Метод проводимостей

Метод проводимостей основан на применении схемы замещения с параллельным соединением элементов (рисунок 2.3).

 Расчёт начинают с определения активных, реакти­вных и полных проводимостей ветвей и всей цепи:

 G1 = R1 / Z12 = 2 / 3,612 = 0,153 См;

 BC1 = XC1 / Z12 = 3 / 3,612 = 0,23 См;


Рис. 2.3

G2 = R2 / Z22 = 14 / 18,42 = 0,0414 См;

Y1 = 1 / Zl = 1 / 3,61 = 0,277 См;

ВC2 = ХC2 / Z22 = 12 / 18,42 = 0,0354 См;

Y2 = 1 / Z2 = 1 / 18,4 = 0,0543 См;

BL3 = 1 / XL3 = 1 / 18 = 0,0556 См;

G = G1 + G2 = 0,153 + 0,0414 = 0,1944 См;

B = –BC1 – BC2 + BL3 = -0,23 – 0,0354 + 0,0556 = –0,2098 См;

 Y =  =  = 0,286 См.

Далее определяем активные, индуктивную и емкостные составляющие то­ков в ветвях заданной цепи:

IG1 = U * G1 = 65 * 0,153 = 9,945 A;

IC1 = U * BC1 = 65 * 0,23 = 14,95 A;

IG2 = U * G2 = 65 * 0,0414 = 2,69 A;

IC2 = U * BC2 = 65 * 0,0354 = 2,3 A;

I1 = U * Y1 = 65 * 0,277 = 18 A;

I2 = U * Y2 = 65 * 0,0543 = 3,53 A;

I3 = IL3 = U * BL3 = 65 * 0,0556 = 3,61 A

Отличие метода проводимостей в том, что мы можем конкретно опре­делить все индуктивные и емкостные составляющие токов в ветвях, а в методе активных и реактивных составляющих мы можем определить только общие реактивные токи с их положительными или отрицательными знаками, указывающими на индуктивный или ёмкостный характер ветви. Если предпо­ложить, например, что ветвь 2 задана параметрами R, L и C, а не R и С, как задано, то это различие проследить можно более наглядно. Тогда со­отношение между реактивными токами, полученными двумя методами вырази­лось бы в таком виде: IP2 = IL2 – IC2. В нашем случае эти соотношения имеют вид: Ia2 = IG1; Iа2 = IG2; IP1 = –IC1; IP2 = –IC2; IP3 = IL3.

Ток в неразветвлённой части цепи можно проверить и по его актив­ной и реактивной составляющим:

Ia = IG1 + IG2; 

 IP = IL3 – IC1 – IC2; 

 I =

Угол сдвига фаз и мощности определяются аналогично.

Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю
Электрические цепи переменного синусоидального тока