Топографические построения Инженерная графика Решение задач по начертательной геометрии Метрические задачи

Решение задач по начертательной геометрии и инженерной графике

Задача №25

Окружность k Ì Г(Г1), A Î k, O - центр окружности.

Построить: k1 =?, k2 = ?

Плоскость Г занимает горизонтально проецирующее положение. Г1 = главная проекция, обладающая собирательными свойствами, поэтому k1 - прямая линия совпадающая с Г1. Г имеет угол (a) наклона к П2, поэтому окружность спроецируется на П2 с искажением, в виде эллипса.

При этом, какое положение займут большая и малая оси эллипса?

Чтобы построить а2 и в2, нужно знать значение радиуса окружности (R), т.к. а1 = 2´R, в2 = 2´R.

Точка А принадлежит окружности, поэтому соединив точку А с О Þ R. На какой проекции можно замерить значение радиуса?

Нигде! Т.к. ОА - прямая общего положения.

Методом прямоугольного треугольника определяем натуральную величину радиуса окружности Þ R

а (1,2) - малая ось эллипса

в (3,4) - большая ось эллипса

Эллипс - центрально симметричная замкнутая кривая, следовательно относительно точки О2 на кривой таких точек как А2 - четыре.

Теперь плавной кривой соединяем все 8 точек.

Плавной кривой соединить все точки

Задача №26

В заданных плоскостях через точку К провести проекции линий уровня

Г(АВС), К Î Г.

Горизонталь плоскости Г должна пройти через две точки плоскости, начинать построение с фронтальной проекции (задача №4)

K2 Î h2 ^ линиям связи

h2 Ç A2B2 = 12

h2 Ç B2C2 = 22

Через 1121 Þ h1, Построить К1 Î h

Построение фронтали f (f1 f2) начинают с горизонтальной проекции: через точку К1 проводят f1 ^ линиям связи.

f1 Ç А1С1 = 31 Þ 32; через 32 и К2 Þ f2.


На главную