Техническая термодинамика

Компрессорные установки.

Объемный компрессор.

Сжатый воздух получается с помощью различного типа компрессоров. Компрессоры низкого давления называют вентиляторами и применяют для перемещения и подачи воздуха в калориферы сушильных установок, воздухоподогреватели, топки, а также для преодоления сопротивления движению газов, чтобы обеспечить тягодутьевой режим в различных установках.
По принципу устройства и работы компрессоры делятся на две группы – объемные и лопаточные. Объемные компрессоры подразделяются на поршневые и ротационные, а лопаточные – на центробежные и осевые (аксиальные). Несмотря на конструктивные различия термодинамические принципы их работы аналогичны между собой. Прямоугольный контур с током в однородном магнитном поле Рассмотрим прямоугольную плоскую рамку с током, помещенную в однородное магнитное поле
Объемный компрессор – это компрессор статического сжатия, которое происходит в нем вследствие уменьшения объема, где заключен газ.
Одноступенчатый поршневой компрессор. На рис.17.1,а показана принципиальная схема одноступенчатого поршневого компрессора. Коленчатый вал компрессора приводится во вращение от электродвигателя или от поршневого двигателя внутреннего сгорания. При движении поршня от ВМТ к НМТ в цилиндр с охлаждаемой рубашкой через автоматически открывающийся клапан А из окружающей среды всасывается газ. Нагнетательный клапан В закрыт под действием давления газов в резервуаре, которое больше атмосферного. При обратном движении поршня от НМТ к ВМТ газ начинает сжиматься, давление его увеличивается, и всасывающий клапан закрывается. Процесс сжатия продолжается до тех пор, пока давление в цилиндре не станет равным (практически несколько больше) давлению в резервуаре. Тогда клапан В открывается, и начинается процесс нагнетания сжатого газа в резервуар до тех пор, пока поршень не придет в ВМТ.


Рассмотрим рабочий процесс в рV - координатах для идеального одноступенчатого компрессора (идеального в том смысле, что в нем не учитываются потери на трение, а утечки газа и объем вредного пространства (объем между крышкой цилиндра и днищем поршня при его положении его в ВМТ) принимаются равными нулю, т. е. на рис.17.1,б положение ВМТ будет совпадать с осью ординат). Обозначим: Vh - рабочий (полезный) объем цилиндра; P1 — давление окружающей среды; P2 - давление газа в резервуаре; процессы: D - 1 - всасывание; 1-2 - сжатие; 2-C - нагнетание.
С началом нового хода поршня снова открывается всасывающий клапан, давление в цилиндре падает от Р2 до Р1 теоретически мгновенно, т. е. по вертикали С-D, и рабочий процесс повторяется, завершаясь, таким образом, за два последовательных хода поршня. Следовательно, компрессор представляет собой двухтактную машину. Площадь теоретической индикаторной диаграммы D-1-2-C, которая графически изображает круговой процесс, измеряет работу, расходуемую компрессором за один оборот его вала. Нужно иметь в виду условность названия кругового процесса (цикла) компрессора, так как всасывание и нагнетание не являются термодинамическими процессами, поскольку они происходят при переменном количестве газа. В этом состоит отличие индикаторной диаграммы от pх-диаграммы, которая строится для постоянного количества рабочего тела. В индикаторной диаграмме D-1-2-C сжатие газа 1-2 - термодинамический процесс, ибо в нем участвует постоянное количество газа. Очевидно, что при одном и том же конечном давлении P2 конечный объем х2 будет различен в зависимости от характера кривой процесса сжатия 1-2, а значит, будет различна и работа, затрачиваемая на привод компрессора.
Как следует из рис. 17.1б, наиболее выгодным процессом сжатия по затрате работ извне для привода компрессора является изотермический процесс 1-2'. В этом случае соблюдаются также идеальные условия для сохранения качества смазочных масел (вязкость, температура вспышки и др.). Однако изотермическое сжатие газа в компрессоре практически неосуществимо, и кривая сжатия обычно располагается между изотермой и адиабатой и может быть принята за политропу с показателем n = 1,2—1,25. Чем интенсивнее будет охлаждение газа при сжатии (чаще всего водой, проходящей через рубашку компрессора), тем больше будет политропа сжатия 1-2 отклоняться от адиабаты 1-2" в сторону изотермы 1-2'. С уменьшением теплообмена показатель n увеличивается. Очевидно также, что с увеличением n при одном и том же отношении P2/P1 конечная температура сжатого газа Т2 будет возрастать по закону:

Tn1P1-n1 = Tn2P1-n2
или T2 = T1(P2/P1)(n-1)/n . (17.1)

Например, при P1 = 0,1 МПа, t1 = 16°С и конечной температуре t2 = 160°С при адиабатном сжатии давление воздуха можно увеличить в 4 раза, а при политропном (n = 1,2) в 10 раз. То есть конечная температура сжатия Т2 зависит от характера процесса сжатия. Наиболее невыгодным процессом является адиабатное сжатие.
Абсолютное значение работы, затрачиваемой на сжатие 1 кг газа в одноступенчатом идеальном компрессоре (А0) может быть подсчитано так:

А0 = Асж + Анагн - Авсас =  Рdv + Р2 v2 - Р1 v1 . (17.2)

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул изучаются с помощью статистического метода, который основан на том, что свойства макроскопической системы определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т.д.).
Логарифмическое дифференцирование Выполнение курсовых Циклы паротурбинных установок