Расчет электрических цепей Теория электрических цепей Курс лекций по физике Курсовая работа по ТОЭ Задачи контрольной работы

Курсовое расчетное задание по электротехнике

Сигналы с полосовыми спектрами.

Корреляция и спектральные характеристики случайных сигналов и помех. Корреляционные и спектральные характеристики случайных процессов составляют предмет статистической радиотехники. Здесь же мы кратко систематизируем сведения о характеристиках случайных процессов, которые необходимы для понимания дальнейшего материала.

Эргодичность сигналов. Стационарные случайные процессы ( процессы, вероятностные характеристики которых не зависят от времени t и зависят только от интервала t2-t1), у которых средние по времени совпадают со средними по множеству, называют эргодическими, а такое свойство процессов - эргодичностью. Например, для эргодических процессов при любом j с вероятностью единица выполняются условия

Белый шум. Его используют как модель наиболее существенной помехи в каналах связи. Он является стационарным случайным процессом с постоянной спектральной плотностью S(w)=S0. Название “белый шум” возникло по аналогии с применяемым в оптике белый свет, который содержит все цвета спектра и все спектральные составляющие которого имеют примерно одинаковую энергию.

Узкополосные и аналитические сигналы. Определение узкополосного процесса. Узкополосные и аналитические сигналы широко используют как модели реальных сигналов и помех

Корреляционная функция узкополосного процесса. Рассмотрим как она определяется применительно к процессу, спектральная плотность которого равномерна на интервале [w1,w2] и для всех частот полосы Dw=w2-w1, равна S .

Управление информационными параметрами сигналов. Классификация методов модуляции.

Прохождение сигналов через линейные цепи с постоянными параметрами. Определение линейной цепи. Добавить параметры и спектры модулированных сигналов.

Особенности анализа радиосигналов в избирательных цепях. При решении задач о прохождении сигналов через электрические цепи основное внимание уделяют изменениям информационных параметров сигналов, поскольку это связано с проблемой сохранения информации, переносимой сигналами. В случаях, когда информация заложена непосредственно в форме сигнала (случай простых сигналов) задача сохранения информации сводится к задаче сохранения формы (или спектра) сигнала.

Линейные радиоэлектронные цепи с постоянными параметрами. Линейные пассивные четырехполюсники и их основные характеристики. Кроме методов, основанных на определении импульсных и переходных характеристик, для анализа свойств линейных цепей широко применяют матричный метод. Его использование основывается на том, что для описания свойств сколь угодно сложной цепи достаточно знать зависимость между ее внешними напряжениями и токами.

Если сигнал S(t) непрерывный, имеет полосовой спектр с шириной DF1=f1-f2, то его можно представить в виде ортогонального разложения следующего вида :

  (46)

где w0=2p(f1+f2)/2 - среднее значение угловой частоты спектра сигнала; Dt=1/2DF1; S(k/DF1); j(k/DF1) - отсчеты амплитуды и фазы сигнала в моменты tk=kDt. Из формулы видно, что для сигналов с полосовыми спектрами необходимо через интервал дискретизации отсчитывать мгновенные значения не только амплитуд, но и фаз. Так, в частности, дискретизируют однополосные колебания - сигналы с полосовыми спектрами. 

Основные особенности ортогонального разложения Котельникова вида (46) следующие : базисная система включает совокупность ортогональных функций отсчетов, каждая из которых представляет собой модулированное по амплитуде колебание с несущей частотой w0 и огибающей, определяемой функцией gk(t); помимо отсчетов амплитуд берутся отсчеты фаз; если длительность сигнала Т, то число отсчетных точек n=T/Dt=2TDF1.

В целом, все ортогональные разложения Котельникова - теоретическая основа большинства методов дискретной передачи непрерывных сигналов. Они позволяют с единых позиций рассматривать передачу как дискретных, так и непрерывных сигналов.

1.4.3. Теорема отсчетов в частотной области.

При анализе сигналов с непрерывными спектрами часто бывает необходимо представить сигнал с помощью частотных выборок спектральной функции , а не временных выборок функции S(t).

Для функции  можно составить ряд, аналогичный выражению (44), на основании взаимной заменяемости переменных t и w в паре преобразований Фурье (36), (37). Применительно к выражению (44) это означает, что t следует заменить на w, 2W=2pF на Т, Dt=1/2F на Dw=2p/T.

Таким образом получаем

  (47)

Расстановка частотных выборок иллюстрируется следующим рисунком.

Если ранее временной интервал между двумя соседними выборками не должен был превышать 2p/2W, то теперь частотный интервал не должен превышать 2p/T. При ширине спектра 2W, охватывающей область частот -W<W<W, число выборок равно 2W/Dw=2FT, т.е. как и при представлении сигнала рядом (44).

В общем случае выборки  являются комплексными числами и в каждой отсчетной точке на оси частот должны быть заданы два параметра - действительная и мнимая части , или модуль и аргумент. Таким образом общее число параметров получается вдвое большим, чем при временном представлении сигнала, когда выборки S(k/2F) - действительные числа. Избыточность представления сигнала в частотной области легко устраняется, если учесть, что   и  являются комплексно-сопряженными функциями, так что задание одной из них однозначно определяет другую. Таким образом, спектр сигнала полностью характеризуется совокупностью комплексных выборок, взятых только в области положительных частот, и число независимых параметров n=2FT, как и при представлении сигнала во временной области.

Ортогональные разложения Котельникова для непрерывных сигналов. Сигналы с ограниченными и полосовыми спектрами. С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95% энергии сигнала. Поэтому чаще всего большинство сигналов рассматривают как сигналы с ограниченными спектрами. Для их анализа наряду с разложением Фурье широко применяют разложение Котельникова.

Корреляция и спектральные характеристики случайных сигналов и помех. Корреляционные и спектральные характеристики случайных процессов составляют предмет статистической радиотехники. Здесь же мы кратко систематизируем сведения о характеристиках случайных процессов, которые необходимы для понимания дальнейшего материала.

Эргодичность сигналов. Стационарные случайные процессы ( процессы, вероятностные характеристики которых не зависят от времени t и зависят только от интервала t2-t1), у которых средние по времени совпадают со средними по множеству, называют эргодическими, а такое свойство процессов - эргодичностью. Например, для эргодических процессов при любом j с вероятностью единица выполняются условия


На главную