Примеры вычисления интегралов


Частные производные

Пусть функция определена в области G и точка . Дадим абсциссе приращение , тогда функция z получит приращение , которое называется частным приращением по x функции в точке .

Частной производной по x функции в точке называется предел отношения частного приращения по x функции в точке к приращению при стремлении к нулю.

Обозначают частную производную функции z по переменной x , , .

Таким образом,

Аналогично определяются частное приращение по y функции в точке : и частная производная по y функции в точке :

(обозначают также , ).

Заметив, что вычисляется при неизменном y, а – при неизменном x, можно сделать вывод: правила вычисления частных производных совпадают с правилами дифференцирования функций одной переменной, но при вычислении полагают , а при вычислении полагают .

Примеры:

1) ;

;

.

2) ; ; .

Для функции одной переменной производная n–го порядка определялась следующим образом: . Аналогично определяются и частные производные высших порядков.

Частной производной n–го порядка функции нескольких переменных называется частная производная первого порядка от частной производной (n–1)–го порядка той же функции.

При этом учитывается, что производные можно вычислять по различным переменным. Так, функция двух переменных имеет две частных производных 1–го порядка: и , четыре частных производных 2–го порядка:

, , , , восемь частных производных 3–го порядка (от каждой из четырех производных 2–го порядка можно найти производную как по x, так и по y), например, , .

Частные производные высших порядков обозначают также , , , , , . Частная производная 2–го или более высокого порядка, взятая по нескольким различным переменным, называется смешенной частной производной.

Интегрирование по частям Пример Вычислить интеграл . Решение. Используем формулу интегрирования по частям . Пусть . Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания

Справедлива теорема:

Две смешанные частные производные одной и той же функции, отличающиеся лишь порядком дифференцирования, равны между собой при условии их непрерывности.

Так,

Пример. Показать, что

Решение.

Геометрический смысл двойного интеграла. Геометрический смысл каждого слагаемого интегральной суммы: если , то - объём прямого цилиндра с основанием высоты ; вся интегральная сумма - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью , равна ). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью , сверху - поверхностью , с цилиндрической боковой поверхностью, направляющей которой является граница области , а образующие параллельны оси . Двойной интеграл равен объёму этого тела
Метод интегрирования по частям примеры решения задач