Системы линейных уравнений Производные высших порядков Производная по направлению Дифференциальные уравнения первого порядка

Математика лекции и примеры решения задач

Элементы теории матриц

В предыдущем разделе было введено определение матрицы A размерности p ´ q как прямоугольной таблицы:

 .

Можно пользоваться сокращенной формой записи:

  A = (aij); i = 1, 2, 3, ¼, p; j = 1, 2, 3, ¼, q.

Две матрицы одинаковой размерности p ´ q называются равными, если в них одинаковые места заняты  равными числами (на пересечении i-й строки и

j-го столбца в одной и в другой матрице стоит одно и то же число; i=1, 2, ..., p; j=1, 2, ..., q). Группа перестановок. Знак перестановки.

Пусть A = (aij) – некоторая матрица и a – произвольное число, тогда aA = (aaij), то есть при умножении матрицы A на число a все числа, составляющие матрицу A, умножаются на число a.

Пусть A и B – матрицы одинаковой размерности A = (aij), B = (bij), тогда их сумма A + B – матрица C = (cij) той же размерности, опреде­ляемая из формулы cij = aij + bij, то есть при сложении двух матриц попарно складываются одинаково расположенные в них числа.

Матрицу A можно умножить на матрицу B, то есть найти матрицу C = AB, если число столбцов n матрицы A равно числу строк матрицы B, при этом матрица C будет иметь столько строк, сколько строк у матрицы A и столько столбцов, сколько столбцов у матрицы B. Каждый элемент матрицы C определяется формулой

 

Элемент cij матрицы-произведения C равен сумме произведений элементов i-

строки первой матрицы- сомножителя на соответствующие  элементы j-го столбца второй матрицы-сомножителя.

Из сказанного следует, что если можно найти произведение матриц AB, то произведение BA, вообще говоря, не определено.

Сложение матриц

Операция сложения определена лишь для матриц одинакового размера. Именно, пусть ,

Суммой матриц  и  называется матрица

 (1.2)

О сложении матриц говорят также, что оно осуществляется поэлементно. Как уже отмечалось выше, в процессе изучения алгебры матриц мы будем пользоваться упрощенными обозначениями  и т.д., не указывая всякий раз множества возможных значений индексов  и , поскольку эти значения будут ясны из контекста. Например, следующее определение суммы матриц эквивалентно вышеприведенному определению.

Пусть  и  – действительные матрицы одного порядка, тогда

 (1.3)

Знак читается “равно по определению”, а отсутствие дополнительных указаний на возможные значения индексов  и  объясняется тем, что все матрицы, входящие в равенство (1.3), имеют одинаковый размер  при некоторых натуральных значениях  и  и, следовательно, .

Операция сложения матриц обладает рядом свойств, роднящих её с операцией сложения действительных чисел.

1) Операция сложения матриц коммутативна, т.е. для любых  и  из

 ◄ Пусть . Тогда

.

Здесь на первом и пятом шагах мы воспользовались обозначением суммы матриц, на втором и четвертом – определением суммы, а на третьем шаге – принципом равенства матриц. ►

Понятие матрицы появилось в средине ХIX века в работах У. Гамильтона, А.Кэли и Дж. Сильвестра. Фундаментальные результаты в теории матриц принадлежат К. Вейерштрассу, К. Жордану, Г. Фробениусу. Идея группы также принадлежит ХIX веку. Название «группа» появилось в работах Э. Галуа. Успех, который выпал на долю этой идеи в анализе, механике, геометрии и теоретической физике, явился основой бурного развития абстрактной алгебры и вторжения ее понятий в математику в первой половине ХХ века. Это вторжение связано с именами Р. Дедекинда, Д. Гильберта, Э. Нетер, Э. Атина.
Приведем примеры вычисления частных производных