Системы линейных уравнений Производные высших порядков Производная по направлению Дифференциальные уравнения первого порядка

Математика лекции и примеры решения задач

Метод Гаусса решения систем линейных уравнений

Если при преобразовании расширенной матрицы системы матрица коэффициентов приводится к трапецеидальному виду и при этом система не получается противоречивой, то система совместна и является неопределенной, то есть имеет бесконечно много решений.

В последней системе можно получить все решения, придавая конкретные числовые значения параметрам r и s. Найти ряд Маклорена для функции .

Те переменные, коэффициенты при которых стоят на главной диагонали трапецеидальной матрицы (это значит, что эти коэффициенты отличны от нуля), называются базисными. В рассмотренном выше примере это неизвестные x1, x2, x3. Остальные неизвестные называются свободными. В рассмотренном выше примере это неизвестные x4, и x5. Свободным неизвестным можно придавать любые значения или выражать их через параметры, как это сделано в последнем примере.

Базисные неизвестные единственным образом выражаются через свободные неизвестные.

Если свободным неизвестным приданы конкретные числовые значения и через них выражены базисные неизвестные, то полученное решение называется частным решением.

Если свободные неизвестные выражены через параметры, то получается решение, которое называется общим решением.

Все бесконечное множество решений системы можно получить, придавая свободным неизвестным любые числовые значения и находя соответствующие значения базисных неизвестных.

Если всем свободным неизвестным приданы нулевые значения, то полученное решение называется базисным.

Одну и ту же систему иногда можно привести к разным наборам базисных неизвестных. Так, например, можно поменять местами 3-й и 4-й столбцы в матрице (6). Тогда базисными будут неизвестные x1, x2, x4, а свободными – x3 и x5. Рекомендуем читателю самостоятельно привести последнюю систему к такому виду, чтобы свободными неизвестными были x1 и x2, а базисными – x3, x4, x5.

Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, называемое рангом системы.

Введем специальные обозначения для строк и столбцов матрицы :

а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если  - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,

,

называется матрицей-строкой порядка .

Матрица , имеющая только один столбец,

,

называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка  в дальнейшем будем обозначать через .

Элементы  матрицы  образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,

,

матрица  называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,

называется нижне-треугольной (верхне-треугольной) матрицей.

Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения  и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.

Понятие матрицы появилось в средине ХIX века в работах У. Гамильтона, А.Кэли и Дж. Сильвестра. Фундаментальные результаты в теории матриц принадлежат К. Вейерштрассу, К. Жордану, Г. Фробениусу. Идея группы также принадлежит ХIX веку. Название «группа» появилось в работах Э. Галуа. Успех, который выпал на долю этой идеи в анализе, механике, геометрии и теоретической физике, явился основой бурного развития абстрактной алгебры и вторжения ее понятий в математику в первой половине ХХ века. Это вторжение связано с именами Р. Дедекинда, Д. Гильберта, Э. Нетер, Э. Атина.
Приведем примеры вычисления частных производных