Браслет для похудения

Браслет для похудения

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Системы линейных уравнений Производные высших порядков Производная по направлению Дифференциальные уравнения первого порядка

Математика лекции и примеры решения задач

Дифференциал функции двух переменных

Представление вектора в виде пары его координат будем записывать в виде   или . Такое представление имеет одну характерную особенность: оно не определяет местоположение вектора на плоскости XOY. Чтобы его определить, нужно наряду с координатами вектора задавать, например, координаты его начальной точки или, как её можно назвать, точки приложения вектора. Функция f определяет для каждой точки области G вектор-градиент, исходящий из этой точки.

Экстремум функции двух переменных. Точка M0(x0,y0) является точкой максимума (минимума) функции z=f(x,y), если найдется такая окрестность точки M0, что для всех точек M(x,y) из этой окрестности выполняется неравенство f(x,y)<f(x0,y0) (f(x,y)> f(x0,y0)). Точки максимума и минимума называются точками экстремума.

Метод наименьших квадратов Пусть проводится n однородных испытаний или экспериментов, и результатом каждого испытания является пара чисел – значений некоторых переменных x и y. Испытание с номером i приводит к числам xi,yi. В качестве испытания можно, например, рассматривать выбор определенного предприятия в данной отрасли промышленности, величиной x считать объем производства продукции (например в миллионах рублей), величиной y – объем экспорта этого вида продукции (в миллионах рублей), и обследовать n предприятий отрасли. Признаком наилучшей прямой считается минимум суммы квадратов отклонений фактических значений y, полученных из таблицы, от вычисленных по формуле

Производная по направлению.

Пусть в плоскости XOY расположена точка M0(x0,y0). Зададим произвольный угол a и рассмотрим множество точек на той же плоскости, координаты которых определяются из формул

 x=x0+tcosa, y=y0+tsina. (1)

Здесь t ‑ параметр, который может быть равен любому числу. Из формул (1) следует:

 (y-y0)/(x-x0)=tga

Это означает, что все точки M(x,y), координаты которых удовлетворяют равенствам (1), лежат на прямой, проходящей через точку M0(x0,y0) и составляющей угол a с осью OX. Каждому значению t соответствует единственная точка M(x,y), лежащая на этой прямой, причем согласно формуле (1) из §1 расстояние между точками M0(x0,y0) и M(x,y) равно t. Можно считать эту прямую числовой осью с положительным направлением, определяемым возрастанием параметра t. Обозначим положительное направление этой оси символом l.

Производной функции z=f(x,y) в точке M0(x0,y0) по направлению l называется число

 . (2)

Производной функции по направлению можно дать геометрическую интерпретацию. Если через прямую l, определяемую формулами (1), провести вертикальную плоскость P (на самом деле в трехмерном пространстве уравнения (1) определяют эту самую плоскость), то эта плоскость пересечет поверхность-график функции z=f(x,y) вдоль

некоторой пространственной кривой L. Тангенс угла между горизонтальной плоскостью и касательной к этой кривой в точке M0(x0,y0) равен производной функции в этой точке по направлению l.

 Предложение 1.9. Пусть  и . Тогда уравнения

, (1.27)

 (1.28)

равносильны для любых матриц  из .

 ◄ Действительно, если  – решение уравнения (1.27), тогда . Умножая обе части этого равенства слева на матрицу , получаем, что.

 или ,

т.е.  является решением уравнения (1.28). Наоборот, если   – решение уравнения (1.28), тогда

.

Но матрица  обратима. Умножая обе части последнего равенства слева на матрицу , получаем, что

,

т.е.  – решение уравнения (1.27). Если же у одного из уравнений (1.27) или (1.28) решений нет, тогда их нет и у второго уравнения, так как в противном случае, повторяя проведённые выше рассуждения, приходим к противоречию. ►

При вычислении сложных матричных выражений целесообразно продумать порядок действий, так как от этого зависит объём вычислений.

Пример. Найти работу силы  при перемещении по линии  от точки  к точке .

 Решение. .

.

Если путь интегрирования простая замкнутая кривая , то криволинейный интеграл обозначают  и вычисляют в направлении против часовой стрелки. Такой интеграл называют циркуляцией.


Приведем примеры вычисления частных производных