Системы линейных уравнений Производные высших порядков Производная по направлению Дифференциальные уравнения первого порядка

Математика лекции и примеры решения задач

Функция нескольких переменных Одним из подходов к исследованию функций двух переменных является изучение поведения функции в точке, то есть определение направлений, в которых функция убывает или возрастает, и определение скорости возрастания или убывания.

Частные производные Частной производной по x функции z=f(x,y) в точке M0(x0,y0) называется предел

 , если этот предел существует.

Приведем примеры вычисления частных производных. Как говорилось выше, для вычисления частной производной по x функции z=f(x,y) нужно положить переменную y равной константе, а при нахождении частной производной по y нужно считать константой переменную x.

Примеры. 1. .

2.

Если частные производные функции z=f(x,y) существуют на некотором множестве, а точка, в которой вычисляются частные производные несущественна, то пользуются более короткими обозначениями:

 .

Сами частные производные могут являться функциями от нескольких переменных на некотором множестве. У этих функций тоже могут существовать частные производные по x и по y. Они называются вторыми частными производными или частными производными второго порядка и обозначаются zxx¢¢,zyy¢¢,zxy¢¢ или . Согласно определению ; . Последняя частная производная второго порядка называется смешанной. Смешанная частная производная второго порядка, вообще говоря, зависит от того, в какой последовательности берутся переменные, по которым вычисляется производная. Так, производная zxy¢¢=(zx¢ )y¢ может не быть равной zyx¢¢=(zy¢ )x¢. Однако существует теорема, утверждающая, что если смешанные частные производные второго порядка непрерывны, то они не зависят от того, в какой последовательности вычислялись частные производные по x и по y. (Рекомендуем читателю самому убедиться в справедливости этой теоремы для функций, рассмотренных в приведенных выше примерах 1 и 2.)

Отметим очень важное отличие функции двух переменных от функции одной переменной. Из существования первых частных производных в точке не следует непрерывность функции в этой точке. Рассмотрим, например, функцию

 .

График этой функции во всех точках, не принадлежащих осям координат OX и OY, представляет собой плоскость, параллельную плоскости XOY, поднятую на 1. Сами эти оси координат также принадлежат графику рассматриваемой функции. Очевидно, что в точке (0,0) функция имеет частные производные по обоим аргументам, обе равные нулю. Очевидно также, что в любой окрестности точки (0,0) можно найти точку M такую, что f(M)=1, в то время как f(0,0)=0. Это означает существование разрыва функции в точке (0,0). (Пример взят из книги О.С.Ивашева-Мусатова “Начала математического анализа”).

 Предложение 1.7. Пусть . Следующие утверждения равносильны:

 1) ;

 2) , где  – элементарная матрица порядка ;

 3) ;

 4) ;

 5)

Пример. Найти работу силы  при перемещении по линии  от точки  к точке .

 Решение. .

.

Если путь интегрирования простая замкнутая кривая , то криволинейный интеграл обозначают  и вычисляют в направлении против часовой стрелки. Такой интеграл называют циркуляцией.


Приведем примеры вычисления частных производных