Системы линейных уравнений Производные высших порядков Производная по направлению Дифференциальные уравнения первого порядка

Математика лекции и примеры решения задач

Метод Гаусса решения систем линейных уравнений

Рассмотрим квадратную систему

 . (1)

У этой системы коэффициент a11 отличен от нуля. Если бы это условие не выполнялось, то чтобы его получить, нужно было бы переставить местами уравнения, поставив первым то уравнение, у которого коэффициент при x1 не равен нулю.

Проведем следующие преобразования системы:

1)поскольку a11¹0, первое уравнение оставим без изменений;

2)вместо второго уравнения запишем уравнение, получающееся, если из второго уравнения вычесть первое, умноженное на 4;

3)вместо третьего уравнения запишем разность третьего и первого, умноженного на3;

4)вместо четвертого уравнения запишем разность четвертого и первого, умноженного на 5.

Полученная новая система эквивалентна исходной и имеет во всех уравнениях, кроме первого, нулевые коэффициенты при x1 (это и являлось целью преобразований 1 – 4):

  . (2)

Можно доказать, что замена любого уравнения системы новым, получающимся прибавлением к данному уравнению любого другого уравнения системы, умноженного на любое число, является эквивалентным преобразованием системы.

Скалярное умножение арифметических векторов

Пусть

 

два арифметических вектора порядка . Скалярным произведением этих векторов называется действительное число, которое обозначается  и находится по правилу

 (1.7)

В дальнейшем будем также считать, что скалярное произведение двух векторов-строк порядка  также вводится по формуле (1.7), т.е.

.

Рассмотрим основные свойства скалярного умножения арифметических векторов.

1) Скалярное произведение симметрично, т.е.для любых  и  из .

 ◄ Действительно,

ввиду коммутативности операций умножения в . ►

Понятие матрицы появилось в средине ХIX века в работах У. Гамильтона, А.Кэли и Дж. Сильвестра. Фундаментальные результаты в теории матриц принадлежат К. Вейерштрассу, К. Жордану, Г. Фробениусу. Идея группы также принадлежит ХIX веку. Название «группа» появилось в работах Э. Галуа. Успех, который выпал на долю этой идеи в анализе, механике, геометрии и теоретической физике, явился основой бурного развития абстрактной алгебры и вторжения ее понятий в математику в первой половине ХХ века. Это вторжение связано с именами Р. Дедекинда, Д. Гильберта, Э. Нетер, Э. Атина.
Приведем примеры вычисления частных производных