Начала линейной алгебры

[an error occurred while processing this directive]

Системы линейных уравнений Решить систему — значит найти все ее решения или доказать, что ни одного решения нет. Система, имеющая решение, называется совместной. Если система имеет только одно решение, то она называется определенной. Система, имеющая более чем одно решение, называется неопределенной (совместной и неопределенной). Если система не имеет решений, то она называется несовместной.

Вычисление обратной матрицы

Дифференциальное и интегральное исчисление функции одной переменной Пусть D — некоторое множество чисел. Если задан закон, по которому каждому числу x из множества D ставится в соответствие единственное определенное число y, то будем говорить, что на множестве D задана функция, которую назовём f. Число y — это значение функции f в точке x, что обозначается формулой y = f(x).

Число x называется аргументом функции, множество D—областью определения функции, а все значения y образуют множество E, которое называется множеством значений или областью изменения функции.

Производные высших порядков. Может оказаться что функция f¢(x), называемая первой производной, тоже имеет производную (f¢(x))¢. Эта производная называется второй производной функции f(x) и обозначается f¢¢(x). Если f есть координата движущейся точки и является функцией времени, то мгновенная скорость точки в момент времени t равна f¢(t), а ускорение равно f¢¢(t)

Несобственные интегралы с бесконечными пределами Если положить промежуток интегрирования бесконечным, то приведенное выше определение определенного интеграла теряет смысл, например, потому что невозможно осуществить условия n®¥;l®0 для бесконечного промежутка. Для такого интеграла требуется специальное определение.

Приведем примеры вычисления частных производных. Как говорилось выше, для вычисления частной производной по x функции z=f(x,y) нужно положить переменную y равной константе, а при нахождении частной производной по y нужно считать константой переменную x.

Производная по направлению. Пусть в плоскости XOY расположена точка M0(x0,y0). Зададим произвольный угол a и рассмотрим множество точек на той же плоскости, координаты которых определяются из формул x=x0+tcosa, y=y0+tsina.

Дифференциальные уравнения первого порядка Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения входят не только сами функции, но и их производные. Если производные, входящие в уравнение, берутся только по одной переменной, то дифференциальное уравнение называется обыкновенным. Если в уравнении встречаются производные по нескольким переменным, то уравнение называется уравнением в частных производных. Мы будем рассматривать лишь обыкновенные дифференциальные уравнения.

 

Метод интегрирования по частям примеры решения задач