Контрольная по математике Конспекты Аналитическая геометрия Математика в экономических расчетах Вычисление пределов Векторный анализ

Примеры решения задач курсовых и контрольных работ по математике

  Сформулируем несколько следствий из доказанной теоремы.

1. Значения аналитической в некоторой области функции полностью определяются её значениями на границе этой области. Этот факт можно сформулировать в виде теоремы о среднем. Возьмём  такое, что окружность  радиуса  с центром в  лежит в D1. Тогда , и . Поэтому справедлива

2. Теорема о среднем. Значение аналитической функции в каждой точке z0 равно среднему арифметическому её значений на любой окружности с центром в точке z0.

Теорема доказана в предположении, что точка z0 лежит внутри контура L. Если z0 находится вне контура, то , так как подынтегральная функция аналитична в .

3. Формула справедлива и для многосвязной области, если под кривой L подразумевать полную границу области. В дальнейшем нам понадобится такой вариант: f(z) аналитична в замкнутом кольце, ограниченном окружностями  и . Тогда для всех z, лежащих внутри кольца, ; при этом окружности проходятся так, что область остаётся слева. В последней формуле переобозначены переменные: .

19.7.3. Бесконечная дифференцируемость аналитической функции. Запишем интегральную формулу Коши в переменных z, t: . Продифференцируем эту формулу по z:  (на самом деле законность дифференцирования интеграла по параметру z требует обоснования; мы примем этот факт без доказательства). Продолжим дифференцирование: ; , и вообще . Следовательно:

Если функция f(z) имеет в каждой точке области D производную первого порядка ( т.е. аналитична в области D), то она имеет в этой области производную любого порядка (т.е. любая производная функции f(z) аналитична в области D). Это свойство существенно отличает аналитические ФКП от дифференцируемых функций действительной переменной.

Основная теорема Коши для многосвязной облости

Теорема. Если G – многосвязаная область, связанная некоторыми контурами,  - аналитическая функция в G и на границе G, то интеграл по границе области G, проходимой по следующему правилу: при прохождении контура непосредственно примыкающая к нему область должна находится по левую руку (Г проходится по часовой стрелке, а -по стрелке) равен нулю


На главную