Контрольная по математике Конспекты Аналитическая геометрия Математика в экономических расчетах Вычисление пределов Векторный анализ

Примеры решения задач курсовых и контрольных работ по математике

Определенный интеграл

Вычисление определенного интеграла

Пример Вычислить интеграл  .

Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

 

Так как данный интеграл является определенным, то при замене переменной , меняются пределы интегрирования:

.

На отрезке  по переменной t функция  непрерывно дифференцируема, монотонна и в границах его принимает значения границ отрезка  по переменной x. Следовательно, выбранная замена переменной правомерна. Получаем:

.

Вычислить несобственный интеграл  или доказать его расходимость. Решение. Перейдем от несобственного интеграла к определенному с границами .Далее считаем полученный интеграл, с помощью обычных правил интегрирования:

Вычислить интеграл от разрывной функции  или установить его расходимость. Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.


На главную